Active Learning 2.0: Making it Inclusive

I’ve written several posts (1, 2, 3) about why active learning is a good thing. There is even growing evidence that some forms of active learning seem to raise student learning outcomes and make those outcomes more equitable at the same time.

All of that is great, but I believe strongly that active learning is not a magic bullet and can be implemented well or poorly. It can sometimes alienate students. A few years ago, I asked students to work in groups on a set of problems in complex analysis. I didn’t give any instructions on how to work well with each other and the problems were rather routine ones. That created a situation in which a student felt left behind in her group and she got discouraged. I tried to talk to her after class but it didn’t help and she dropped the class shortly after.  She said that she dropped the class because it didn’t fit into her schedule, but I still suspect that the group work experience had something to do with it.

In this post, I would like to argue that just using active learning is not enough. Because active learning requires students to be more engaged in their own learning and often involves more human-to-human interactions, we must pay attention to how those experiences support or diminish students’ sense of competence and belonging. I believe that in most cases, what’s needed is a little more care and planning in the use of active learning. I’ll try to illustrate that through some examples.

Example #1: Think-Pair-Share

A common active learning strategy is “think-pair-share“. Unfortunately, I often find that instructors skip the “think” step and skip to “pair and share.” And more generally, I find that most speakers/facilitators/instructors don’t give any (or sufficient) independent think time before asking participants/students to talk with one another.

In many situations, independent think time is so important because it gives time for people who process information in different ways to put together their thoughts before talking. Some people are great at “talking while thinking”: putting together their ideas while talking it out. It can work out well if you’re like this and you’re around other people who are similar–the process of building off of each others’ ideas mid-sentence is fun to watch. Unfortunately, I’m not one of those people. I prefer to have some time to think before I just start talking and I don’t like it when other people interrupt me when I’m talking.

By giving students independent think time before asking them to discuss, instructors can give students more equitable access to the opportunity to think. Students with learning differences, students whose first language is not English, students who are introverted will appreciate having more time to think before speaking. Even those students who like to “talk while thinking” will probably have more refined ideas to share before they start talking. Therefore, the independent think time makes discussions far more productive and less awkward.  I dislike those moments when I’m in a room of people and the speaker/instructor asks us to talk to each other and there’s this awkward period when people are trying to figure out what to say and who should start, etc.

Example #2: Personal Response Systems

Personal Response Systems (for example, clickers) are great because they allow students to get timely feedback on their learning. But, imagine what it might feel like if you constantly answer questions incorrectly in class and you don’t feel supported in improving. Sometimes these Personal Response Systems also allow the instructor to display a distribution of answers in real time in class and it can be demoralizing when you can see that you’re one of a few who got the problem wrong and everyone else got it right.

I’m not suggesting that we should avoid giving students critical feedback that helps them improve. Critical feedback is important, but so is the way in which it is conveyed. When students receive feedback on their learning, it is important that the feedback be accompanied with the instructor’s high expectations for all students and support and encouragement for all students to meet those goals.  (See the work of Yeager and others on “wise feedback.”)

Typically these “clicker questions” are multiple choice questions. When these questions are designed well, the distractors (incorrect choices) often exploit some common student misunderstanding. When discussing the answers to the incorrect questions, you can point out the aspects of the incorrect choices that are correct or ask for what situation/question the incorrect choice could be a correct answer. (Also see “my favorite no.”)

And, don’t forget to provide multiple ways for students to get help if they need it.

Example #3: Group work

I saved this topic for last because I think it’s tricky to do well. The rewards and risks that accompany it are great.

If you assign students to work in heterogeneous ability groups (i.e., creating groups in which struggling students work with “more capable” students), there is always the risk of the groupings themselves to discourage students. Students aren’t dumb–they know that we sometimes group them in this way. If you are struggling in the class and you see that you’re always the one in the group that is struggling, and you’re not really getting the support you need from your peers, you might begin to wonder whether you really belong in the group and the class.  Students also don’t know how to help each other, especially in math classes–their understanding of what it means to help someone else usually involves telling someone a procedure or answer without providing any of the rationale.

But even if you group students in other ways, because you can’t be in all places at all times in the classroom, there is always the risk that one of your groups has negative interactions that spoil the learning for the group, or worse, cause some students to feel marginalized or excluded.

The example that I mentioned at the top of the post suggests a second reason why group work can go badly. When you ask students to work together on a task that really doesn’t require multiple brains, then you’re setting students up for to compare themselves with each other to see who can do it faster/better, or to zone out and copy the work of the “smart” student. If you’re going to have groups of students work together, then the task should really take advantage of the fact that multiple brains working together can accomplish more than those brains working in parallel but separately. In other words, you should use group worthy tasks.

Third, group work can go awry because we all have biases. The small groups in the classroom become microcosms of inequities that exist in the broader society. For example, if you have a group of three men and one woman working together, you might find that the three men ignore the contributions of the woman. Students need to learn how to work well with each other. Scan the classroom frequently for status issues (for example, by looking at each student’s body language and how much they are talking/contributing).

Finally, there is the challenge of establish and maintaining norms and expectations for group work (you have them, right?). If students aren’t familiar with your norms and expectations, you might want to find ways for students to practice working in groups before doing it in class on course content.

What other strategies do you use to ensure that active learning in your classroom supports the learning for all students? Please add your comments below.

Building Evidence Connecting Teaching Practices and More Equitable Student Outcomes (Continuously Updated)

Note: This post will be continuously updated as I gather more research on this topic.

In their paper “Active learning increases student performance in science, engineering, and mathematics,” Freeman, et al., suggest that we are seeing a new wave of “second-generation research” in the education literature that explores “which aspects of instructor behavior are most important for achieving the greatest gains with active learning, and elaborate on recent work indicating that underprepared and underrepresented students may benefit most from active methods.”

Indeed, a growing body of research shows that there are specific teaching strategies that improve learning outcomes for all students and also improve learning outcomes disproportionately for women and/or underrepresented students.

In this continuously updated blog post, I will try to maintain an annotated bibliography of such research. My goal is to provide higher education faculty and faculty developers with evidence to support teaching strategies that produce more equitable learning outcomes for all students, but particularly those who have been historically left out of STEM fields.


Huber, Bettina J., 2010. “Does Participation in Multiple High Impact Practices Affect Student Success at Cal State Northridge? Some Preliminary Insights” Northridge, CA: California State University-Northridge Office of Institutional Research.

National Survey of Student Engagement (NSSE) results from 863 graduating seniors at CSUN showed a correlation between HIP participation and higher GPA at exit and increased likelihood of graduating on time. Low-income students (Pell Grant recipients) and Latinx students had even higher GPA bump. Exit GPAs of Latinx and Pell students who didn’t participate in HIPs were lower than those of other students but if they participated in three or more HIPs their GPAs slightly exceeded other students.


Haak, D.C., HilleRisLambers, J., Pitre, E. and Freeman, S., 2011. Increased structure and active learning reduce the achievement gap in introductory biologyScience, 332(6034), pp.1213-1216.

“Highly structured” (daily and weekly practice with problem-solving, data analysis, higher-order cognitive skills) large-enrollment intro biology course for undergraduate majors at University of Washington improved learning for all students compared to low-structure (lecture intensive) version. There were disproportionately large benefits for students in their Educational Opportunity Program (many of whom are first-gen and from minority groups historically underrepresented in STEM).


Eddy, S.L. and Hogan, K.A., 2014. Getting under the hood: how and for whom does increasing course structure work?CBE-Life Sciences Education, 13(3), pp.453-468.

Essentially a replication of the 2011 study above except that the researchers studied differences between a “low structure” (lecture intensive), “moderate structure” (weekly ungraded preparatory assignments, 15-40% of each class for in-class activities on questions that were similar to previous exam problems) and “high structure” (even more prep assignments and in-class activities) for at the University of North Carolina. The same instructor taught all of the different versions of this course. Total of about 2400 students over 4 years of the study. Failure rate went down for all students in the more structured courses compared to lecture intensive version. Students also reported a greater sense of classroom community. Black students participated in the lecture intensive class far less than other students did, but in the more structured course, they spoke in class as much as other students. Exam grades improved for everyone in the moderate structure course, but it increased even more for Black students. In fact, Black students in the structured course outperformed the majority students in the lecture version of the course.And, a similar thing was observed for first-generation students.


Laursen, S.L., Hassi, M.L., Kogan, M. and Weston, T.J., 2014. Benefits for women and men of inquiry-based learning in college mathematics: A multi-institution studyJournal for Research in Mathematics Education, 45(4), pp.406-418.

Over 3000 students across 100 different course sections in four colleges and universities were included in this study of “inquiry-based learning” (IBL) in mathematics classrooms. The students were all in a math or science major, excluding students who were preservice elementary or secondary teachers. Even though there was a range of different implementations of IBL, researchers found that students in IBL courses on average performed as well as or better than their non-IBL peers. IBL students also took as many or more math courses than non-IBL students, which seems to indicate that their interest in mathematics increased as well. Pre- and post-surveys of cognitive skills in mathematics, attitudes toward mathematics, and attitudes about collaboration in a math class. Women in non-IBL courses reported significant decreases in their confidence to pursue higher mathematics, whereas men in non-IBL courses reported an increase in their confidence. In contrast, women in IBL courses reported an increase in their confidence similar to that of men in non-IBL courses.


Winkelmes, M.A., Bernacki, M., Butler, J., Zochowski, M., Golanics, J. and Weavil, K.H., 2016. A Teaching Intervention that Increases Underserved College Students’ SuccessPeer Review18(1/2).

The researchers set out to measure the effect of teachers providing two transparently designed, problem-based take-home assignments (as compared to their original versions) on first-year college students. (“Transparently designed” here means something specific to the training that the faculty received. They were trained to revise their assignments to be clearer about the purpose, tasks, and criteria for the assignments.) About 1,180 students taught by 35 faculty, 61 courses, 7 institutions were involved in the study. Because the courses spanned many different disciplines, the researchers relied mostly on self-report data from the students. “Students who received more transparency reported gains in three areas that are important predictors of students’ success: academic confidence, sense of belonging, and mastery of the skills that employers value most when hiring.” And what’s more, for first-generation, low-income, and underrepresented students, those reported benefits were larger.


Please let me know if you encounter other research articles that provide evidence for specific teaching strategies having disproportionately positive outcomes for women and/or students historically underrepresented from STEM. I will add it to this list.