Building Evidence Connecting Teaching Practices and More Equitable Student Outcomes (Continuously Updated)

Note: This post will be continuously updated as I gather more research on this topic.

In their paper “Active learning increases student performance in science, engineering, and mathematics,” Freeman, et al., suggest that we are seeing a new wave of “second-generation research” in the education literature that explores “which aspects of instructor behavior are most important for achieving the greatest gains with active learning, and elaborate on recent work indicating that underprepared and underrepresented students may benefit most from active methods.”

Indeed, a growing body of research shows that there are specific teaching strategies that improve learning outcomes for all students and also improve learning outcomes disproportionately for women and/or underrepresented students.

In this continuously updated blog post, I will try to maintain an annotated bibliography of such research. My goal is to provide higher education faculty and faculty developers with evidence to support teaching strategies that produce more equitable learning outcomes for all students, but particularly those who have been historically left out of STEM fields.

Huber, Bettina J., 2010. “Does Participation in Multiple High Impact Practices Affect Student Success at Cal State Northridge? Some Preliminary Insights” Northridge, CA: California State University-Northridge Office of Institutional Research.

National Survey of Student Engagement (NSSE) results from 863 graduating seniors at CSUN showed a correlation between HIP participation and higher GPA at exit and increased likelihood of graduating on time. Low-income students (Pell Grant recipients) and Latinx students had even higher GPA bump. Exit GPAs of Latinx and Pell students who didn’t participate in HIPs were lower than those of other students but if they participated in three or more HIPs their GPAs slightly exceeded other students.

Haak, D.C., HilleRisLambers, J., Pitre, E. and Freeman, S., 2011. Increased structure and active learning reduce the achievement gap in introductory biologyScience, 332(6034), pp.1213-1216.

“Highly structured” (daily and weekly practice with problem-solving, data analysis, higher-order cognitive skills) large-enrollment intro biology course for undergraduate majors at University of Washington improved learning for all students compared to low-structure (lecture intensive) version. There were disproportionately large benefits for students in their Educational Opportunity Program (many of whom are first-gen and from minority groups historically underrepresented in STEM).

Eddy, S.L. and Hogan, K.A., 2014. Getting under the hood: how and for whom does increasing course structure work?CBE-Life Sciences Education, 13(3), pp.453-468.

Essentially a replication of the 2011 study above except that the researchers studied differences between a “low structure” (lecture intensive), “moderate structure” (weekly ungraded preparatory assignments, 15-40% of each class for in-class activities on questions that were similar to previous exam problems) and “high structure” (even more prep assignments and in-class activities) for at the University of North Carolina. The same instructor taught all of the different versions of this course. Total of about 2400 students over 4 years of the study. Failure rate went down for all students in the more structured courses compared to lecture intensive version. Students also reported a greater sense of classroom community. Black students participated in the lecture intensive class far less than other students did, but in the more structured course, they spoke in class as much as other students. Exam grades improved for everyone in the moderate structure course, but it increased even more for Black students. In fact, Black students in the structured course outperformed the majority students in the lecture version of the course.And, a similar thing was observed for first-generation students.

Laursen, S.L., Hassi, M.L., Kogan, M. and Weston, T.J., 2014. Benefits for women and men of inquiry-based learning in college mathematics: A multi-institution studyJournal for Research in Mathematics Education, 45(4), pp.406-418.

Over 3000 students across 100 different course sections in four colleges and universities were included in this study of “inquiry-based learning” (IBL) in mathematics classrooms. The students were all in a math or science major, excluding students who were preservice elementary or secondary teachers. Even though there was a range of different implementations of IBL, researchers found that students in IBL courses on average performed as well as or better than their non-IBL peers. IBL students also took as many or more math courses than non-IBL students, which seems to indicate that their interest in mathematics increased as well. Pre- and post-surveys of cognitive skills in mathematics, attitudes toward mathematics, and attitudes about collaboration in a math class. Women in non-IBL courses reported significant decreases in their confidence to pursue higher mathematics, whereas men in non-IBL courses reported an increase in their confidence. In contrast, women in IBL courses reported an increase in their confidence similar to that of men in non-IBL courses.

Winkelmes, M.A., Bernacki, M., Butler, J., Zochowski, M., Golanics, J. and Weavil, K.H., 2016. A Teaching Intervention that Increases Underserved College Students’ SuccessPeer Review18(1/2).

The researchers set out to measure the effect of teachers providing two transparently designed, problem-based take-home assignments (as compared to their original versions) on first-year college students. (“Transparently designed” here means something specific to the training that the faculty received. They were trained to revise their assignments to be clearer about the purpose, tasks, and criteria for the assignments.) About 1,180 students taught by 35 faculty, 61 courses, 7 institutions were involved in the study. Because the courses spanned many different disciplines, the researchers relied mostly on self-report data from the students. “Students who received more transparency reported gains in three areas that are important predictors of students’ success: academic confidence, sense of belonging, and mastery of the skills that employers value most when hiring.” And what’s more, for first-generation, low-income, and underrepresented students, those reported benefits were larger.

Please let me know if you encounter other research articles that provide evidence for specific teaching strategies having disproportionately positive outcomes for women and/or students historically underrepresented from STEM. I will add it to this list.